Integration of statistical methods and judgment for time series forecasting: principles from empirical research
نویسندگان
چکیده
We consider how judgment and statistical methods should be integrated for time-series forecasting. Our review of published empirical research identified 47 studies, all but four published since 1985. Five procedures were identified: revising judgment; combining forecasts; revising extrapolations; rule-based forecasting; and econometric forecasting. This literature suggests that integration generally improves accuracy when the experts have domain knowledge and when significant trends are involved. Integration is valuable to the extent that judgments are used as inputs to the statistical methods, that they contain additional relevant information, and that the integration scheme is well structured. The choice of an integration approach can have a substantial impact on the accuracy of the resulting forecasts. Integration harms accuracy when judgment is biased or its use is unstructured. Equal-weights combining should be regarded as the benchmark and it is especially appropriate where series have high uncertainty or high instability. When the historical data involve high uncertainty or high instability, we recommend revising judgment, revising extrapolations, or combining. When good domain knowledge is available for the future as well as for the past, we recommend rule-based forecasting or econometric methods. Reproduced with permission from G. Wright and P. Goodwin (eds.), Forecasting with Judgment, John Wiley & Sons Ltd., 1998, 269-293.
منابع مشابه
AN EXTENDED FUZZY ARTIFICIAL NEURAL NETWORKS MODEL FOR TIME SERIES FORECASTING
Improving time series forecastingaccuracy is an important yet often difficult task.Both theoretical and empirical findings haveindicated that integration of several models is an effectiveway to improve predictive performance, especiallywhen the models in combination are quite different. In this paper,a model of the hybrid artificial neural networks andfuzzy model is proposed for time series for...
متن کاملRule-Based Forecasting: Using Judgment in Time-Series Extrapolation
Rule-Based Forecasting (RBF) is an expert system that uses judgment to develop and apply rules for combining extrapolations. The judgment comes from two sources, forecasting expertise and domain knowledge. Forecasting expertise is based on more than a half century of research. Domain knowledge is obtained in a structured way; one example of domain knowledge is managers= expectations about trend...
متن کاملWhich Methodology is Better for Combining Linear and Nonlinear Models for Time Series Forecasting?
Both theoretical and empirical findings have suggested that combining different models can be an effective way to improve the predictive performance of each individual model. It is especially occurred when the models in the ensemble are quite different. Hybrid techniques that decompose a time series into its linear and nonlinear components are one of the most important kinds of the hybrid model...
متن کاملOverview and Comparison of Short-term Interval Models for Financial Time Series Forecasting
In recent years, various time series models have been proposed for financial markets forecasting. In each case, the accuracy of time series forecasting models are fundamental to make decision and hence the research for improving the effectiveness of forecasting models have been curried on. Many researchers have compared different time series models together in order to determine more efficien...
متن کاملMachine learning algorithms for time series in financial markets
This research is related to the usefulness of different machine learning methods in forecasting time series on financial markets. The main issue in this field is that economic managers and scientific society are still longing for more accurate forecasting algorithms. Fulfilling this request leads to an increase in forecasting quality and, therefore, more profitability and efficiency. In this pa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1998